
Architecture for Scalable,
Reliable and Efficient
Game Operations

One Line of Code launches Integrated,

Full-Stack LiveOps for Unity

Beamable Technology White Paper

Beamable Technology White Paper2

All games are now live games: your players have become more demanding, more discriminating,
and more distracted than ever before. They are hungry for engagement, immersion and community.
That means releasing live games with social features, deep economies and regular content
updates–and you need to build games faster than ever.

Gone are the days when you could launch a rough beta and expect to scale–indeed, the risk today
is one of runaway success: what happens when your game launches and millions of people want
to start playing it? Will that be an opportunity to scale, or a risk of disaster?

At the same time, the market has become more competitive than ever: in 2021 alone, over $85
billion flowed into game deals. After only one month in 2022, that number was already exceeded!
That means that while there’s more capital than ever to build games, it is spread across a dwindling
supply of experts in backend programming, server scaling, DevOps and live operations.

Competitive advantage in game development centers on delivering great game experiences–
storytelling, art, engagement, interaction–while ensuring that you can reliably scale, support and
manage your game as it grows. Quickly building and iterating these features and content is critical.

Our team at Beamable’s team has a background building games that needed to scale to over
20 million players. We lived through all the complexity involved in supporting games with deep
economies and rich social interaction and then scaling up to support millions of active players.

In the following sections, you’ll learn:

• How a full-stack, integrated approach to LiveOps helps you build and iterate faster
• What we learned from the lifecycle of several live game projects
• The core issues that contribute to complexity, mistakes and lost opportunities
• Beamable’s architecture, built around a highly-scalable Serverless Game Backend

In this White Paper, you’ll learn how this one line of code gives you reliable infrastructure
to build a live services game:

var beamable = BeamContext.Default;

This code is your the gateway to a full-stack, integrated platform that lets you create cus-
tom server logic with C# microservices – along with a suite of LiveOps tools and services
to build and operate games that players love.

Introduction

Beamable Technology White Paper3

Contents

What We Learned from the Lifecycle of Live Games 5
Prototyping 5
Early Iteration 5
Expanded Playtesting 6
Live Operations 6
Multi-Game Operations 7

Game Server Architectures 8
Principles of the Beamable Architecture 8
Background 9
Content Servers 10
Types of Over-the-Wire Updates 10

Remote Config 11
Binary Assets 11
End-User Delivery 11
Workflow 11

Multiplayer Relay Servers 12
Peer-to-Peer (P2P) versus Relay 12

Relay Servers 13
Deterministic Simulation 13

Application Servers 14
Advantages of Server versus Client Authoritative Code 14
Web Application Stacks 15

Microservices and Serverless 15
Microservice Architectures 16
Game Engine on the Server 16
Workflow and Scalability Problems 17
Backend as a Service 17

DevOps for Live Games 18
Beamable: Integrated, Full-Stack LiveOps 19

One Magic Line of Code Speeds Development 19
Common Workflows Improved by Beamable 20,21
Comparing the Developer Experience 21

Beamable Technology White Paper4

Code Authoring 22
Creating Server Workloads 22
Multiplayer Relay Server 23
Debugging 24
Deployment and Versioning 25
Monitoring 26
Using Persistent Data 27
Implementing Live Services 28
Customizing Prefabs 28
Summary of Live Services 29
Identity 29
Stats 29
Managed Inventory 29,30
Stores 30
Events 30
Content 31
Cloud Save 32
Messaging 32
Chat 32
Groups 32
Connectivity 32
Leaderboards 32
Matchmaking 32

Content Authoring 33
Versioning 34
Live Operations 35,36

Beamable’s Architecture Vision 37

• Competition between feature ideation vs. implementing streamlined workflows
• Problems with shipping and deploying sets of data, content and code
• The brittleness of fragmented architectures with multiple tech stacks
• The large workload associated with patching together detached architectures

Beamable Technology White Paper5

Let’s imagine a brand new game project that’s going to use Unity, and consider what happens
across the course of development, and ultimately live operations. This could be a new studio, or an
existing publisher spinning up a new title–and join this game on its journey from idea to LiveOps.

As you find the fun of your game, the work starts expanding outwards. You add features and additional
gameplay loops, art, rules and statistics.

Usually, there’s a point in any project where your game designer needs to do something as basic as
changing a single value, like the hit points on an enemy. If the game designer works inside Unity, they
frequently need a coder to make changes for them–or else it’s easy to do things as simple as missing
a semicolon that could break code. That’s when the engineers are caught in a dilemma:

• Let designers and other less-technical contributors change code anyway, and just fix it as
issues arise?

• Start separating code from data and stats, along with tooling to allow designers to change
the data and stats?

• Have the engineers make changes for the designers?

What We Learned from the Lifecycle
of Live Games

Prototyping

Early Iteration

At the dawn of your project, you’re in Unity. You’re making random scripts, game objects, iterating
rapidly on gameplay. This is mostly client-centric code, because building everything takes time
and you want to focus on getting the game’s ideas onto the screen quickly.

It’s usually too early to start worrying about performance, scalability and workflows. But you
might want to test out what it’s like to drop-in features like competitive leaderboards or or social
scaffolding. At this stage, it’s all about moving fast, trying things and finding the fun.

Beamable Technology White Paper6

In all of these cases, the end result is the same: progress is slowed-down. Agility is
diminished. And valuable opportunities to build the things that players care about are
missed, because you’re spending time on tooling, increasing technical debt and QA.

Expanded Playtesting

Live Operations

At some point, the game is functional enough to start playing. This becomes a critical time
in the project because it’s usually when games have the opportunity to go from “concepts
on the screen” to truly great experiences. But this stage introduces numerous challenges:

• Addition of identity, social, economic features
• Different builds/versions on each developer and playtester’s device
• Data sets that need to match to specific builds: data for individual development machines,

the production playtesting environment, QA, etc.
• Often, one person becomes a single-point-of-failure on builds
• Distinctions between server code (with their own versioning, build issues, etc.) vs. the

compatible client code
• The need to distribute binaries on different platforms
• QA needs the ability to set up test cases with initial states based on specific data conditions

The rabbit-hole goes deep on these problems. Making tools that synchronize data with
code and traverse the complexity of the development to staging to production deployment
process is complicated. Tooling and automating the process takes enormous energy.

LiveOps begins when you start having players from outside the studio. It usually results in exponential
rises in the number of players: first a small, invitational alpha community; then, a closed beta; and
eventually towards a geographically-locked soft-launch and then an official launch.

New challenges include:

• Risks of community backlash stemming from new issues like data privacy, GDPR compliance,
purchase issues, hackable client code

• Designers and LiveOps managers need to set up tournaments, events, new items, offers
and other data that are changed “out of band” from code builds

• The data/content/code synchronization issue becomes even more critical–errors here
could mean the game is down and players are angry.

• Customer support is dealing with real customers: suddenly, they need to view player
transaction histories, make changes to player data, review purchases, etc.

• Measure and learn from performance metrics such as lifetime value (LTV)

Beamable Technology White Paper7

As a studio or publisher grows and eventually has multiple games, they’re often presented with new
opportunities and challenges:

• Reusing shared code with social and economic features across multiple games
• Consistent branding and visual language across social interfaces
• Calculating aggregate lifetime value across a network of games
• Cross-selling and cross-promotion
• Benchmarking performance and comparing between multiple titles

Multi-Game Operations

In the next section, we introduce Beamable’s integrated, full-stack architecture for
LiveOps.

Beamable Technology White Paper8

Game Server Architectures

Principles of the Beamable Architecture
We saw an opportunity to help game developers build faster and manage games more effectively–
while bringing people onto a reliable and scalable serverless architecture. We adopted two core
principles in Beamable:

• Full Stack: we saw an opportunity to reorient the developer experience towards the
IDE they use on a daily basis, with the ability to organize, debug, locally instantiate and
deploy their code without the fragmented mess that’s usually associated with game
development.

• Integrated: the workflows for game developers should work harmoniously with the
workflows for day-to-day content creators and LiveOps teams. That meant creating a
set of interoperable interfaces, access control systems and content management flows
so everyone could work together–without the constant interruptions or being stuck
waiting on an engineer to shepherd a change.

A full-stack, integrated approach dramatically improves the speed of development and your
team’s responsiveness to change.

In this section, we’ll explain how fixing the problems undermining the speed and efficiency
of Unity live game development requires rethinking the architecture for live services. Typical
game servers include some combination of:

• Content servers for on-demand delivery of of content to end users
• Multiplayer Relay servers to synchronize client state between players
• Application servers for tamper-proof code execution and persistent data

Beamable’s approach unifies all of these services into an integrated, full-stack environment
that works harmoniously with the Unity Editor, while leveraging the power of a Serverless
Backend to make scaling, DevOps and LiveOps simple.

Beamable Technology White Paper9

The simplest thing a game maker can possibly do is ship a fully self-sufficient binary which is packaged
with all its dependencies, can function without internet connectivity, and executes solely within the
confines of an end-user device (e.g. Android, iOS, PC, console).

However, this removes the game maker from functionality which can make live operations more
effective, responsible to change and improve the player experience.

Common reasons for adopting game servers include:

• Application code must be tamper-proof for the purpose of multiplayer gameplay, authentication,
or real-money purchases

• Gameplay content must be delivered over-the-wire and on-demand because it cannot all
fit on the end-user app

• Gameplay content must be kept hidden until end-users meet qualifying requirements
• Gameplay code and content must be able to be updated at will and delivered to the end-user

app remotely without requiring the app/binary to be updated

The use-cases that require server functionality can vary tremendously in terms of their technical and
cost requirements. These requirements generally (but not exclusively) fall in the following categories:

• Simulation Fidelity (Good): How much of the game runs on the server side?
• Network Latency (Fast): How quickly are players notified of server-state changes?
• Infrastructure Cost (Cheap): How cost-effective is it to operate the servers?

As such, games frequently use multiple techniques to manage the networked experience of players,
oftentimes in combination.

Background

Beamable Technology White Paper10

Many games have a vast and diverse data domain: gigabytes or terabytes of data that may contain
many different data formats ranging from binary assets to text/json/yaml files which define gameplay
entities such as items, puzzles, and rules. This content may be updated on the order of minutes, hours
and days rather than on the order of milliseconds.

This type of data is essentially static, and ordinarily only updated by releasing a new version of the
application binary which contains new and updated assets. This poses a set of difficult choices for
the game developer. Options include:

• Accept that different players will be playing different versions of the game. This means
fragmenting the community and more QA/engineering complexity.

• Force the player population to upgrade by deprecating the old version. This inevitably comes
at the cost of player churn as not all players will upgrade.

• Or, ideally: Architect the app so that it can receive content updates over the wire. This is
the approach Beamable takes with its content management system, which is integrated to
the workflows content creators are accustomed to.

Content Servers

Games typically depend on different systems for updates, depending on whether changes affect
code, configuration, or content. Beamable allows you to publish versioned content which is atomically
updated and validated according to design rules. Some of these content change systems include:

Types of Over-the-Wire Updates

Remote Config
A flavor of content services, commonly referred to as Remote Config, specializes in delivering structured
(e.g. json) configuration data to the end-user to tune the behavior of the application. This can be something
as simple as showing a different loading screen to indicate the arrival of Halloween, or as far-reaching as
altering the balance of the game in a multivariate study to determine the optimal configuration for player
retention. As such, remote config may support delivering variants of content to specific segments of players.

Binary Assets

Game makers will often need to pull game engine assets from the cloud. These can be virtually anything,
and usually include images, audio files, videos, as well as a variety of formats native to the game engine.
Given that game engine formats often vary in their final form from one platform to the next, as well as in
terms of their level of detail based on device or user preference – these assets can add up having several
variants for a single piece of content. This in turn means a vast amount of data is generated and delivered
to end users.

End-User Delivery

Content must be cost effective to store and deliver to edge devices (e.g. smartphones) anywhere in the
world reasonably quickly. Content Delivery Networks (CDNs) solve this problem quite effectively, usually
in combination with a simple storage solution which can be replicated to edge nodes (e.g. AWS S3 with
CloudFront).

Workflow

A typical problem with all of these content management systems is the workflow that links the authoring
process to all aspects of the DevOps lifecycle: versioning, testing, deployment, and live services. Beamable
consolidates these steps into an integrated pipeline that frees developers from manual processes or labor-
intensive scripting.

Beamable Technology White Paper11

Beamable Technology White Paper12

Multiplayer Relay Servers
In cases where a rich world-state needs to be synchronized in real-time, developers will often opt
for a client-side simulation. Beamable provides a Relay Server that allows clients to communicate
with each other in real-time and also supports tamper-resistant deterministic simulation.

The network synchronization can happen in one of several ways:

• Direct Peer-to-peer: players establish a direct connection to each other, conceptually
a mesh network.

• Client/Server Peer-to-peer: a player is elected the “host” and is the de facto server as
well as a player. All players connect to the “host” player.

• Relay Server: Players connect to their nearest relay node server, which is responsible
for synchronizing data between players.

Peer-to-Peer (P2P) versus Relay

Direct P2P Client/Server P2P Relay Server

The main downside of P2P scenarios are as follow:

• Can be prone to complications if players are behind a NAT router (i.e. don’t have a public
ip). Requires NAT-punchthrough server or port forwarding setup.

• Can be prone to inconsistent network latency, where a single player may cause an overall
slow down.

• Can be prone to leaking somewhat sensitive information, such as player IP addresses
• Host can have an advantage over other players

Beamable Technology White Paper13

Relay Servers
Relay servers, such as Beamable, solve these problems at a cost which remains affordable. They’re
compatible with client/host topologies, and typically stream data between client peers in real-time
over a reliable UDP protocol or over a (TCP) websocket, with no server-side simulation. Clients are
responsible for ordering, processing and interpolating between packets to produce a coherent
simulation.

Unless you use a deterministic simulation technology such as Beamable’s, the simulation is vul-
nerable to cheating within the client runtime.

Certain game requirements lend themselves well to a networking model where each client runs
a simulation which is guaranteed to be the same on every other client, irrespective of device,
cpu chipset, or operating system – this is referred to as a deterministic simulation. By doing this,
games can:

• Cut down significantly on the data that is synchronized over the network to other players
• Detect when a player cheats as any tampering with the client state will result in a desync

(i.e. divergence between client simulations)

With a small amount of extra functionality, relay servers can support deterministic networking by
keeping track of (a) the player action event log and (b) the current simulation frame. Practically
speaking, this means that in addition to the aforementioned benefits, deterministic simulations
are not subject to the weakest link problem where a single slow player halts the entire simulation.

In traditional Peer-to-Peer lockstep deterministic simulations, if a player in the game does not
commit their intended actions for a given simulation frame (sim frame) by the time the frame is
current, the simulation halts for everybody involved. This is not so with a Relay Server – the slow
player can fall behind, and catch up later by syncing the event log they missed, and speeding up
their client simulation to the current frame.

Deterministic Simulation

Advantages of Server versus Client Authoritative Code

Beamable Technology White Paper14

For use-cases that need guarantees against cheating or
require persisting player actions into a shared world state,
Application Servers (paired with a database) provide a means
to securely execute gameplay code and persist the outcome.

Beamable provides an Application Server technology that
is deployed in a serverless manner and subdivided into
microservices that are independently scalable, versioned,
debuggable and easily integrated into the Unity Editor
workflow.

The scale of what is executed on the server may range from
small, such as validating a purchase receipt and granting a player an item, to massive, such as
simulating game engine physics between hundreds of players in real-time on a persistent world
(e.g., an MMORPG).

Similarly, the scale of what is persisted ranges dramatically both in volume and diversity, from a
friend relationship between players needed to implement a friend list, to the locations, trajectories,
and details of millions of different game entities.

Application Servers

With few exceptions, games are generally built into executables which are run in environments
that are not secured against tampering.

A sufficiently motivated and technically inclined player may both inspect the state of an applica-
tion on their device, as well as modify it to grant themselves an advantage. Developers therefore
have three options:

• Live with the fact that players can and will cheat
• Move the entire executable to a tamper-proof environment (e.g., streamed games such

as with Google Stadia)
• Execute a subset of the game logic in a secure environment, such as Beamable’s

Application Server

Web Application Stacks

Beamable Technology White Paper15

Many game developers adapted their backends from off-the-shelf application servers built for
websites–Ruby on Rails, Node.js, Django, or similar tech stacks.

Web applications expose APIs that communicate over HTTP requests/responses and are usually
stateless. This enables them to be easily scaled horizontally. The web technology ecosystem is
arguably the richest in terms of off-the-shelf components and support within standard libraries,
making it extremely attractive no matter the programming language or workflow.

The challenge with Web-oriented application servers is the complexity that comes with polyglot
language usage, data serialization, and multiple IDEs. On top of that, you need DevOps to provision,
scale and deploy cloud infrastructure to host the Web application code. All of this results in
workflow fragmentation that adds engineering overhead, brittle processes and compounding
technical debt–resulting in slower and slower game development.

are a way to design an application, namely as a set of individually scaled services
which own their data and only expose it via a well-defined api.

is a way to run an application, namely without concern, awareness, or need for
dedicated infrastructure (physical or virtualized).

Microservices

Serverless

Microservices and Serverless

Microservices and Serverless approaches can be defined both conceptually and in terms of their
practical implementations. Conceptually:

An early approach to serverless was to package code into “lambdas” which are sections of code
that execute on the server and scale according to utilization. The problem with lambdas is their
execution environment is detached from the IDE, adding additional steps for deployment, versioning,
etc. They also tend to be hard to debug because the execution environment is opaque.

Beamable Technology White Paper16

Microservice Architectures

Microservices, such as those integrated to Beamable, arose to fix the problems inherent in lamb-
das while incorporating many of the conveniences present in typical full-stack Web development.

The earliest websites were typically built as monolithic applications: a single deployable application
supported by a database (Relational or NoSQL). Although conceptually simple and well suited to
smaller apps, over time this often became unreliable and challenging to scale. Monolithic appli-
cations are especially vulnerable to the following:

• Separation of concerns and data ownership is easily violated leading to brittleness
• Debugging and Identifying root causes is increasingly challenging as the code base grows

in size and complexity
• Performance and cost optimization is harder to achieve when services cannot be re-

sourced and scaled individually
• Developer agility is impeded as it becomes riskier to add rapidly to a large and complex

application
• Adopting new or domain specific tech stacks isn’t possible without changing the entire app

Microservices address the above issues, while enabling a new generation of applications that can
both scale traffic throughput and supercharge developer agility. Microservices are deployed inside
of containers, which are automatically scaled via an orchestration system on top of automatical-
ly-provisioned hardware. These same containers can reside on each developer’s local environment,
which makes it easier to code, test, debug, manage dependencies and onboard new developers.

Beamable automates all of these elements by integrating the coding, management and monitoring
of your microservices to the Unity Editor as well as Web-based dashboards.

There are also use-cases which require twitch multiplayer gameplay (i.e. rich simulation and very
low network latency) as well as provide strong guarantees against cheating/tampering. In such
cases, a full simulation of the game will run on a server and be streamed to clients (i.e. players),
who will in turn submit their intended actions to the server.

The client simulation will attempt to be as close as possible to the game server simulation, often
interpolating between data points to infer the current world state before it receives a confirmation
from the server.

Both Unity and Unreal game engines provide headless modes, which allow you to run your
application on the server. However, this can be computationally expensive due to engine overhead,

Game Engine on the Server

Beamable Technology White Paper17

Fragmented:
unlike many full-stack application server frameworks, there’s usually multiple IDEs, languages,
and debugging can only happen within one part of the stack at a time–and things like deployment
and shipping compatible versions of the front and backend increase in complexity exponentially.

to make things worse, the ecosystems of software that have emerged to support games frequently
don’t work “out of the box” with each other. The result is that components that ought to save
time (dashboards, server-side modules for common live services, content management systems,
customer service tools) shift a substantial amount of labor towards systems-integration work.
This systems integration work becomes a new source of ongoing technical debt that competes
with the creation of the game features that players care about.

Detached:

or architectural choices made by the game developer. There have been recent efforts, such as the
Unity Data Oriented Tech Stack (DOTS), to make it more efficient to run engine code on the server.

Beamable provides a full OpenAPI/Swagger specification for all available APIs, and can therefore
be invoked from anywhere. For Unity, Beamable also provides a full SDK which can be used on
the server side or on the client side.

Workflow and Scalability Problems
There are two main categories of problems inherent in most game development projects. Most
developer workflows are:

Backend as a Service

A few years ago, “backend as a service” (BaaS) platforms emerged to help game developers by
supplying many of the common live services components: authentication, in-app purchases, social
systems, guilds, events, storefront, etc.

The problem with these systems is that they never addressed the underlying problems that made
game development so complex in the first place:

• They introduced even more languages (e.g., CloudScript to control server-based behaviors)
• New workflows that didn’t work within the tools used by game developers
• Brittle and complex methods for scaling, versioning and debugging the custom server

code that sits alongside stock components

BaaS caused work to shift from implementing some of the common backend components to
integrating all of the backend and customized parts of game development–while also injecting
ongoing complexity to DevOps.

Beamable Technology White Paper18

When building a live services game, developers need to consider the big picture of DevOps. All of
the following need to work coherently:

• Author new code, microservices, features, content, items, rules, etc. from within the
creation environment each contributor is accustomed to.

• Build code, content and data into servers and client binaries
• Test builds within individual workstations, testing environments, playtesting servers, etc.
• Integrate changes from multiple developers, including coders, artists and designers
• Deploy changes to different environments, up to and including “production”
• Operate the live game (i.e., “LiveOps”): events, promotions, economy, etc.
• Monitor results, cost and performance
• Plan from the results and plan for the next set of features, code and content

Each of these steps need to have a cohesive process that simplifies implementation, workflow,
and management interfaces–while empowering the right people to make decisions.

In the following section, we’ll present a comprehensive overview of Beamable’s architecture and
how we set out to solve the fundamental problems of live services games.

DevOps for Live Games

Beamable Technology White Paper19

Beamable: Integrated, Full-Stack LiveOps
There are three main layers to the Beamable architecture: the Serverless Game Backend, which
hosts the microservices; the Live Services SDK which provides a wide range of off-the-shelf features
that you’ll need for your game; and a LiveOps Portal for day-to-day management by all of the
users in your studio.

Beamable’s integrated approach results in simplicity for your developers. After installing
the plug-in for Unity, one line of code gets you building games faster:

var beamable = BeamContext.Default;

One Magic Line of Code Speeds Development

The immediate effect of adding the line of code into your game is that you
gain a frictionless identity system for your players, and the dashboards in the
LiveOps Portal start updating with your key engagement metrics. For developers,
they gain access to a palette of drag-and-drop live services, and may now
write server code that works inside Unity Editor’s debugging and deployment.

Beamable Technology White Paper20

Common Workflow
With Beamable’s Integrated, Full-
Stack LiveOps:

Code Authoring

Use the Unity Editor as the central place for authoring
both client and server code in C#, with full access to all of
the plugins and tooling you’re used to–for both client and
server-authoritative components.

Creating Server Workloads
Execute flexible, secure and automatically-scaling
workloads using cloud-based microservices. Use whatever
third-party services (drivers, databases, etc.) you prefer.

Multiplayer Distribute and synchronize multiple game clients with
cheat-resistant deterministic multiplayer support.

Debugging

Create a local instance of all your server-authoritative
microservices alongside your client code. Trace code up-
and-down the stack, set breakpoints and watch variables
anywhere, etc.

Deployment
Ship server-authoritative code without having to provision
or manage servers, networks, load balancers, scaling rules,
monitoring/logging software, build processes.

Monitoring

Observe the performance of your custom microservices
through a web-based portal or from within the Unity Editor
to identify opportunities for improvements in latency and
compute consumption.

Implementing Live Services

Common live services (events, guilds, players, inventories,
etc.) are available through the Live Services SDK. Drag-
and-drop from within the Unity Editor, and manage their
configuration and data either from inside the editor or from
a Web-based portal.

Using Persistent Data

Easily store key/value pairs that cover most data storage
use cases from within Beamable microservices, and perform
powerful queries including geospatial and time series
analysis–or connect with your own database and storage
services for more specialized use cases. Configuration
datasets that change the production environment can be
managed through the integrated deployment process.

DevOps for Live Games
Here is a chart of how Beamable improves the way you work:

Beamable Technology White Paper21

Common Workflow
With Beamable’s Integrated, Full-
Stack LiveOps:

Content Authoring
Integrated tools allow content creators to use a web-based
form, a spreadsheet or the Unity Editor to create new items,
events, variable changes, etc.

Versioning

Use the standard versioning tools you prefer, to organize
all of your code, content and data into comprehensive
packages–without the clunky build processes to synchronize
different sources of truth.

Monitoring

Observe the performance of your custom microservices
through a web-based portal or from within the Unity Editor
to identify opportunities for improvements in latency and
compute consumption.

Live Operations
Web-based forms and access control for managing the
key data structures inside Beamable: players, inventories,
purchase histories, events, content, etc.

Comparing the Developer Experience
Here is a quick comparison to how a C# programmer would work with the full-stack of code in a game
compared to other backend-as-a-service (BaaS) environments like GameSparks or PlayFab:

Beamable C#
Microser-
vices

Amazon AWS
Lambda

GameSparks
Cloud Code

Microsoft
PlayFab
Cloud Script

C# Client Code

C# Server Code

Can Run
Locally During
Development

Full Debugging
Support
(Debug.Log,
Breakpoints,
etc...)

Source Control
Integration

Unity Workflow
(ScriptableObjects,
etc...)

Detached support, requires setup and manual workflow

Fully integrated support

[Microservice(“HelloWorld”)]

public class HelloWorld : Microservice

{

 [ClientCallable]

 public void ServerCall()

 {

 // This code executes on the server.

 }

}

Beamable Technology White Paper22

In the following sections, we’ll dive into how each of these workflows actually function within
Beamable.

Code Authoring
Despite the “integrated” in “integrated development environment” (IDE), the authoring
of server-authoritative code is almost entirely fragmented from the development process.
If you’re using Unity for game development, it is the Unity Editor that is the most efficient
IDE to work from within–regardless of what part of the stack you’re building.

To accomplish this, we started by making C# the primary scripting language for server-
authoritative functions, alongside the native use of C# within Unity itself.

Creating Server Workloads
With Beamable, C# script implements your servers in a way that’s consistent with how you’re coding
the front-end of your game. These server-authoritative workloads allow you to create multiplayer
features that require coordination and rules between players, as well as single-player features
that require greater security (for example, execution of server-based rules or cooldown timers that
would ordinarily be hackable within a game’s front-end code). Unlike lambdas, these microservices
are flexible and allow for the use of third-party APIs and DLLs that you need for your game.

In keeping with Beamable’s simplicity, the code to implement The C# is very simple:

Beamable Technology White Paper23

Creating Server Workloads
Deployment of the microservice is similarly simple, and fully-integrated with Unity Editor:

Creating a C# Microservice from inside Unity Editor

Multiplayer Relay Server
Synchronize user inputs across the network and distribute changes across each game client within an
active session. Relay Server is ideal for multiplayer games such as real-time strategy, tower defense,
MOBAs, card battlers, auto chess and others with deterministically-advancing gameplay.

Relay Server keeps track of the simulation frame for each player, maintains an event log, and conducts
timekeeping. When building with Relay Server, you have the option to either use it as a simple
communication channel between games (for cases where you aren’t concerned about cheating) or you
can implement cheat-resistant deterministic multiplayer, which allows the game clients to securely
reach consensus about gameplay state between multiple players. In the latter case, attempts to hack
the client result in falling out of sync and the cheater is excluded from further play.

Beamable Technology White Paper24

Debugging
Because Beamable consolidates the full stack within one language and one IDE, it transforms the
way you debug your game. You can do all of the ordinary debugging operations from any layer of
the stack, including your server-authoritative microservices: set breakpoints, watch variables, trace
execution. You don’t need to rely on complicated multi-stack setups or depend on time-consuming
logging to isolate issues.

In multiplayer games that use Relay Server, you’ll find the ability to replay event logs are
helpful with reproducing issues.

Beamable also supplies a runtime debugging console that authorized users can employ to change
player stats and variables that map to the persistent datastore. This can be helpful for developers
to set initial conditions to more easily create server code, or for QA to set up test cases.

Debugging a Microservice alongside its front-end code in Unity Editor

Beamable Technology White Paper25

Deployment and Versioning

Beamable automates the steps involved in moving all of the interdependent client code and
microservices through all of the steps of your continuous integration, quality assurance and release
process.

These C# code modules inside your microservices are deployed independently of the front-end
code (there’s no remnant of the backend within the code you ship to players), while maintaining a
cohesive set alongside your client binaries.

Promoting a deployment of content and code

Because the microservices are fully-managed, you don’t need to provision servers or do any of the
complicated work normally associated with scaling your servers: no networks to configure, load
balancers to setup, scaling rules to write, monitoring/logging software to install, build processes
to script, etc.

Viewing Microservice logs from the integrated Live Ops Portal

Beamable Technology White Paper26

Monitoring
As you create your microservices, you’ll want to keep an eye on opportunities to improve your
code’s performance. Beamable’s microservice management features provide a web-based interface
for logging and monitoring of your code.

Monitoring Microservice performance from the integrated LiveOps portal

Beamable Technology White Paper27

Using Persistent Data
Beamable’s Live Services SDK provides many of the common patterns you’ll need for working with
persistent player and world data–managed inventory, player stats, leaderboards, identity, etc.

However, many games also need to create their own unique data. Beamable offers a simple solution:
leverage the power of off-the-shelf MongoDB within your microservices to meet those needs. We call
that Microservice Storage. With it, you can define your data structures in Unity and leverage C#
Microservices to store and retrieve key/value pairs–and perform powerful queries including geospatial
and time series analysis from your databases and collections. You can also access logs, look into
the DBs or visualize live metrics from our LiveOps portal and a MongoExpress interface. All of this
happens in a fully-managed environment so that you save countless hours of DevOps time that you’d
normally have to spend integrating detached workflows and development tools.

Because microservices allow you to utilize any third-party datastores or APIs you want, you could
also make use of any persistent data system you prefer for those cases where you require specialized
stores that optimize around certain kinds of systems.

Beamable Technology White Paper28

Implementing Live Services
Beamable comes with a Live Services SDK that allows you to rapidly add common social, commerce
and content features to your game. These services operate within the same highly-scalable
microservice architecture that you build your own custom services in, giving you the confidence
to reliably scale up to whatever number of players you have.

You can hook into these live services at several layers to help you build your game faster:

• Many of the live services come packaged with a Unity prefab that brings drag-and-drop
simplicity to the game development process.

• You can call each service via C# SDK that lets Unity developers operate in a native-
friendly environment.

• A RESTful API is available in cases where you need to interact with the live services from
outside the context of a C# project. This is often helpful for integrating with legacy code
in other languages, third-party services, websites, etc.

Customizing Prefabs
For many of the “out of box” live services features, we package prefabs that make it easy to
get a feature up-and-running. Beamable Unity Style Sheet (BUSS) enables developers to change
the style of the drag-and-drop prefabs. Developers can declare their desired style using familiar
concepts from Web and UIToolkit. The styles are then applied in a cascading fashion to prefabs
provided by Beamable. Styles are capable of expressing colors, gradients, borders, rounded edges,
shadows, shapes, textures, fonts, and other text properties. Due to the cascading application of
style, developers can override specific sections of their game. The styles are applied at runtime,
and can therefore be mutated given game state or business needs, facilitating custom themes
during events or holiday seasons.

Beamable Technology White Paper29

There are two other major areas of prefab customization, layout, and behavioral. BUSS allows
developers to adjust the layout of their prefabs by using the standard Box Model layout approach
that is popular in other technologies like WebKit and UIToolkit.

The drag-and-drop prefabs are built from components that can be inspected and reassembled to
form new behavioral variants, or you could choose to build your UI from scratching using the C#
API once your requirements and aesthetics have stabilized.

Summary of Live Services
The following is a summary of the out-of-box services you can rapidly incorporate into
your game:

Managed
Inventory

Identity

This service includes maintaining player identity across all of the
connected services (Managed Inventory, Chat, Mail, Events, etc.), as well
as authenticating players and federating their identity with common
third-party services like Facebook, Apple, Google and Steam–or allow
username/password authentication.

Stats

Player identities can be customized with your own statistics, allowing
you to customize players for use with your own game (for example,
defining a level or set of attributes for each player). This can be used
for storing progress, as well as segmenting player populations for
several applications: A/B tests that experiment with game changes for
different audiences, or delivering different offers to different players.

Managed Inventory is a richly featured API which allows players to
own items and currencies -- two behaviorally different entities which
are ubiquitous in games. Items can be conceived of as Non-Fungible,
meaning that each item instance has a type from which it inherits
static properties which are universal to all instances in addition to
dynamic properties which are specific to the item instance, making
it potentially unique (e.g. a sword with a randomly generated +10
damage modifier). Currencies, on the other hand, can be conceived
of as Fungible -- meaning that they are completely interchangeable
(e.g. 10 gold). Currencies can also be used to represent stackable items
(e.g. 10 Potions).

The Managed Inventory allows developers to atomically modify a

Beamable Technology White Paper30

Managed
Inventory

player inventory: that is, perform multiple operations (add, modify,
remove) in an all-or-nothing manner. A common example of this is
when granting a player an item in exchange for currency -- you want
to do both at the same time or neither.

Finally, a substantial benefit of the Managed Inventory is that it is
natively integrated with many other Beamable services, including
Purchases, Announcement, In Game Mail, Event Rewards, and many
more.

Note: Managed Inventory runs in a high-performance database, and
the use of non-fungible and fungible inventory shouldn’t be confused
with blockchain implementations. However, the concepts do map to
the concepts of non-fungible tokens (NFTs) and fungible currencies,
and a developer could build on top of Managed Inventory to federate
a subset or all of the inventory entities to the blockchain.

Stores

Stores allow you to create storefronts and offers in your game that utilize
real-money or in-game currency purchases. You can configure store
catalogs (SKUs), pricing formulas, and organize special and limited-time
offers for players and created localized versions of store text. Offers
may be segmented to different players according to whether they’ve
met specific requirements (such as statistics linked to their identity),
whether they’ve previously purchased a specific offer, membership
in certain cohorts, or whether they’re under specific purchase limits.

Payment gateways including Apple, Google, Facebook Steam and
Windows Store are supported–or you can use our coupon system to let
players redeem items for codes. Beamable’s backend include robust
receipt verification and anti-hacking systems.

Events

Players compete for a limited time to win points towards a leaderboard.
Tournaments are a type of event that include progression/regression
systems, stages and tiers to enhance competition. You can deliver
rewards to players (from the Managed Inventory service) based on
their rank in the rewards.

Beamable Technology White Paper31

Content

Games usually include significant amounts of custom-content. This
service allows you to create your own custom content objects that
synchronize with the deployment of other code and data for your game.

• Beamable provides this service integrated inside of the Unity
workflow. Furthermore, content deployments are:

• Atomic: All or nothing deployments ensure that if the upload/
deployment fails midway players will not be left in a halfway
point including new and old content.

• Versioned: Content is versioned and can be both integrated
from and diffed against related environments (e.g. dev-> stag-
ing) so that it is easy to test, deploy, and rollback.

• Validatable: Syntactic, Semantic, and Referential validation
is supported such that developers write custom rules and can
be confident in the correctness of the content.

• Viewable: Content can be viewed from the web portal, unity, as
well as inside of google sheets via a plugin Beamable publishes.

Beamable Technology White Paper32

Cloud Save
Allow players to store progress. The Cloud Data is fetched online and
stored locally; scoped by game and player. As changes are detected,
the system automatically keeps data in sync.

Messaging
Includes one-to-one in-game mail; one-to-many announcements; and
notifications to the player’s device.

Chat Allow players to communicate with each other within the game.

Groups
Implement short-term player grouping (like “parties”) or persistent
groupings such as guilds.

Connectivity
Check on network status within the game to provide error messaging
or enable offline mode for some features.

Leaderboards
Create leaderboards for players to rank and compare themselves to
each other according to the stats you record.

Matchmaking
Match players with each other according to experience (Elo) or
competitive ranking.

Beamable Technology White Paper33

Content Authoring
Day-to-day content creation (making new items, announcements, events, etc.) involves a diverse
set of stakeholders at a game studio. This can include:

• Game developers who are comfortable with sitting down to the Unity Editor
• LiveOps personnel who prefer form-based inputs via a Web browser
• Game designers who like working within a spreadsheet to manage itemization, stats,

power curves, etc.

Beamable provides all of these content-creation workflows, while also integrating them with all
of the other systems that are organized around code. That means syncing data with your servers,
uniting changes with deployment and version control works as part of a cohesive and easy-to-
manage system; no more complicated build scripts and backend tooling to get all your code and
content working together as it makes it from various developers heads and onto your players’
screens.

In addition, once content is published, Beamable initiates a “hot update” to the game clients, so
that they refresh affected data to reflect new content without requiring the download of a new
game client (or even a reload).

Beamable Technology White Paper34

Versioning
Versioning fragmented sets of code, data and content is often a nightmare–resuting in complex
repositories, check-in scripts or separate processes that need to be managed independently. With
Beamable, you’ll just be using the same version control system you normally use, and it will cover
all of the data and content that Beamable manages.

Live Operations
Beamable’s web-based LiveOps Portal provides a day-to-day management interface for all your
users, microservices, and the features managed by the Live Services SDK. This allows a number of
different users and use cases to interact with the portal, including your game developers, customer
service, QA, designers and product managers.

When you make a change to the any data via the portal, a message is transmitted to the affected
users who are playing the game live, causing a “hot” change to things like inventories–without
requiring a game reload.

Beamable Technology White Paper35

Here are the major parts of the LiveOps interfaces you can manage by the portal,
and some of the users and use cases covered by them:

Section Features Users & Use Cases

User Management
Add and remove users; grant
permissions to different sec-
tions.

Administrators

Announcements Post announcements to your
players.

Product managers, Game Direc-
tors, Community Managers

Players

Look up players by ID, email,
or third-party account associa-
tions (Facebook, Google, etc.).
Drill into associated data such
as Groups, Inventory, Stats, etc.

Customer Service (as a first
step to looking into an issue),
QA (to investigate issues and
setup test cases)

In-App Purchases View accounting history for
each player.

Customer Service (to resolve
customer support issues), QA
(to investigate issues), Game
Developers (as a debugging
tool)

Stats

Change your customized data
fields (as configured by the
Stats service of the Live Ser-
vices SDK) associated with each
player.

Customer Service (to resolve
customer support issues, e.g.,
you could change a player’s
level), QA (to investigate issues
and setup test cases), Game
Developers (as a debugging
tool), Game Designers (to sim-
ulate designs and how they’re
impacted by different player
stats)

Cloud Data
View and change the cloud
data stored via the Cloud Save
service for specific users.

Customer Service (to change a
player’s state in the game, in
response to inquiries), QA (to
investigate issues or setup test
cases), Game Developers (as a
debugging tool)

Inventory
View and change the inventory
(currency and items) associated
with specific players.

Customer Service (to grant
rewards, or correct issues), QA
(investigate issues, setup test
cases), Game Developers (as a
debugging tool)

Beamable Technology White Paper36

Section Features Users & Use Cases

Groups View and change the composi-
tion of a group

Customer Service (remove
members, reassign control/per-
missions in response to issues),
QA (setup test cases), Game
Developers (as a debugging
tool)

Leaderboards
Create leaderboards, view/
change players on the leader-
board

Game Developers (to create
new types of competitive
systems), Customer Service (to
investigate and resolve issues),
QA (investigate issues and set-
up test cases)

Tournaments

Create competitive events,
view/change state of players
in the tournament, configure
reward tables

Product Managers (to set up
live events), Customer Service
(to investigate and resolve
issues), QA (investigate issues
and setup test cases)

Beamable Technology White Paper37

If you’re building a live services game, then Beamable’s architecture enables you to
build games faster.

The “magic line of code” that begins your journey is the result of a set of architectural principles:

• Full-Stack: in that it is built around a set of live services, front-end and LiveOps components
that let you work with C# throughout your game development.

• Integrated: rather than a set of detached components you’re left to connect on your
own, the Beamable services work out of the box–and with Unity Editor. Development,
debugging and deployment work in harmony.

Whether you’re creating a highly-interactive multiplayer game, a game with social or economic
features, or even a single-player game with a community built into the experience–then
Beamable can help.

Beamable’s Architecture Vision

Architecture for Scalable,
Reliable and Efficient
Game Operations

Build Games Faster:

One Line of Code enables Integrated,
Full-Stack LiveOps for Unity

